The formula of X^3+y^3+z^3-3xyz is (x+y+z)(x2+y2+z2−xy−yz−zx).
Proof of x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)
x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)
Assume L.H.S=x3+y3+z3−3xyz and R.H.S=(x+y+z)(x2+y2+z2−xy−yz−zx)
First take R.H.S
(x+y+z)(x2+y2+z2−xy−yz−zx)
To multiply two polynomials, we multiply each monomial of one polynomial (with its sign) by each monomial (with its sign) of the other polynomial.
x.x2+x.y2+x.z2−x2y−xyz−x2z+y.x2+y.y2+y.z2−xy2−y2z−xyz+z.x2+z.y2+z.z2−xyz−yz2−xz2
= x3+xy2+xz2−x2y−x2y+yx2+y3−xy2−y2z+x2z+y2z+z3−yz2−xz2−3xyz
= x3+y3+z3−3xyz
L.H.S = R.H.S
x3+y3+z3−3xyz=x3+y3+z3−3xyz
Therefore, x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx).
What is x^3+y^3+z^3-3xyz Factorization?
The factorization of the expression x^3+y^3+z^3−3xyz is (x+y+z)(x^2+y^2+z^2-xy-yz-zx)
What is x cube + y cube + z cube minus 3 x y z Formula?
The x cube + y cube + z cube minus 3 x y z Formula is (x + y+z) (x square + y square + z square – xy – yz – zx).
x3+y3+z3-3xyz=1/2(x+y+z) (x-y)2+(y-z)2+(z-x)2
The equation x^3 + y^3 + z^3 – 3xyz = 1/2(x + y + z) [(x – y)^2 + (y – z)^2 + (z – x)^2] is indeed true.