

According to this, electrons are inserted into atomic orbitals in ascending order of orbital energy. The Aufbau principle states that atomic orbitals that are available and have the lowest energy levels are filled before those that have higher energy levels.
Germanic in origin, the word “aufbau” generally translates to “construct” or “build up.” Below is a schematic showing the sequence in which atomic orbitals are filled. Here, the terms “n” and “l” denote the principal quantum number and azimuthal quantum number, respectively.
The placement of electrons in an atom and the related energy levels can be understood using the Aufbau concept. For instance, the electrical configuration of carbon is 1s22s22p2 and it possesses six electrons.
It’s crucial to remember that each orbital can only accommodate a maximum of two electrons (as per the Pauli exclusion principle). Additionally, the filling of electrons into orbitals within a single subshell must adhere to Hund’s rule, which states that before any two electrons pair up in an orbital, each orbital within a given subshell must be solely occupied by electrons.
Read Also: Henderson-Hasselbalch Equation
Instead of [Ar]3d44s2, the electron configuration of chromium is [Ar]3d54s1 (as suggested by the Aufbau principle). The improved stability offered by half-filled subshells and the relatively small energy difference between the 3d and 4s subshells are two reasons for this anomaly, among others.
Below is an illustration of the energy difference between the various subshell.
Half-filled subshells have reduced orbital electron-electron repulsions, which boost stability. Similarly to that, fully filled subshells boost the atom’s stability. As a result, some atoms’ electron configurations defy the Aufbau principle (depending on the energy gap between the orbitals).
Another exception to this rule is copper, which has an electrical configuration matching [Ar]3d104s1. The stability offered by a fully filled 3D subshell can account for this.